On the sign-imbalance of skew partition shapes
نویسنده
چکیده
Let the sign of a skew standard Young tableau be the sign of the permutation you get by reading it row by row from left to right, like a book. We examine how the sign property is transferred by the skew Robinson-Schensted correspondence invented by Sagan and Stanley. The result is a remarkably simple generalization of the ordinary non-skew formula. The sum of the signs of all standard tableaux on a given skew shape is the signimbalance of that shape. We generalize previous results on the sign-imbalance of ordinary partition shapes to skew ones.
منابع مشابه
N ov 2 00 7 SKEW DOMINO SCHENSTED ALGORITHM AND SIGN - IMBALANCE
Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...
متن کاملSkew Domino Schensted Algorithm and Sign-imbalance
Using growth diagrams, we define skew domino Schensted algorithm which is a domino analogue of “Robinson-Schensted algorithm for skew tableaux” due to Sagan and Stanley. The color-to-spin property of Shimozono and White is extended. As an application, we give a simple generating function for a weighted sum of skew domino tableaux whose special case is a generalization of Stanley’s sign-imbalanc...
متن کاملEnumerative combinatorics related to partition shapes
This thesis deals with enumerative combinatorics applied to three different objects related to partition shapes, namely tableaux, restricted words, and Bruhat intervals. The main scientific contributions are the following. Paper I: Let the sign of a standard Young tableau be the sign of the permutation you get by reading it row by row from left to right, like a book. A conjecture by Richard Sta...
متن کاملN ov 2 00 6 SIGNED DIFFERENTIAL POSETS AND SIGN - IMBALANCE
We study signed differential posets, a signed version of Stanley’s differential posets. These posets satisfy enumerative identities which are signed analogues of those satisfied by differential posets. Our main motivations are the sign-imbalance identities for partition shapes originally conjectured by Stanley, now proven in [3, 4, 6]. We show that these identities result from a signed differen...
متن کامل6 Signed Differential Posets and Sign - Imbalance
We study signed differential posets, a signed version of differential posets. These posets satisfy enumerative identities which are signed analogues of those satisfied by differential posets. Our main motivations are the sign-imbalance identities for partition shapes originally conjectured by Stanley, now proven in [4, 5, 7]. We show that these identities result from a signed differential poset...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 28 شماره
صفحات -
تاریخ انتشار 2007